
The Parallel Research Kernels,
a tool for parallel systems
investigations - Part I

Rob Van der Wijngaart
Intel Labs
https://github.com/ParRes/Kernels

*Parallel system=hardware system+network stack+OS+parallel programming environment
(ProgEnv: programming model + API + compiler + runtime)

AMS Seminar Series, NASA Ames Research Center, October 13, 2016

Motivation
Observations

•  Performance of full app mixture of multiple effects/interactions: hard to apply
learnings to other apps

•  Hard to obtain useful data of full app on simulator (1 s * 1M = 11.6 days)

•  Can’t predict which apps (or languages, or ProgEnvs) important in 10 years

•  But: Can predict which fundamental parallel constructs/patterns will matter

Proposal: provide something simpler

•  Generic parallel-specific app patterns, i.e. parallel kernels

•  Each kernel is dominated by only one pattern

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example esults

Limitations
•  Focused (mostly) on features stressed by parallel parts of application,

emphasizes parallel overhead, so may exaggerate parallelization impact

•  Not designed for full application performance projections

•  Single data structure, one or two hot loops: small data layout/alignment
details may dominate performance

•  Not designed to measure robustness: fault tolerance, I/O performance

•  Not designed to measure ProgEnv productivity, due to kernel simplicity

•  Not designed to measure ProgEnv expressiveness; that battle had been
fought … we thought

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

Philosophy
•  Broad range of important patterns found in real parallel applications

•  Reasonably self-contained for all of HPC

•  Paper-and-pencil specifications

•  Simple, understood by non-domain scientists (not algorithms, but patterns!)

•  Each kernel does some real work (data transformation). Corollaries:

−  Uniform performance metric = work/time

−  Work can be tested for correctness

•  Compact reference codes O(1-3 pages): easy porting to new ProgEnv

•  Performance expectations (simplified performance models)

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

Context
PRK are nothing new; PRK are different

Legend:
ü: yes
~: meh
―: no
? : dunno

NPB CLOMP(I) EPCC HPCC SPEC MPI SPEC
OMP PRK

arbitrary scale ― ü ü ü ― ― ü
verification ü ~ ― ü ü ü ü

many runtimes ― ― ― ~ ― ― ü

pattern coverage ~ ― ― ― ? ? ü
compact ― ü ü ~ ― ― ü

work metric ü ~ ― ü ü ü ü

performance model/
expectation ― ― ― ― ― ― ü

PRK are like the English language: steal stuff from wherever you can and make it your own

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

Usage model
•  Analyze app, map patterns to kernels, study performance of kernels

•  If system does well on all relevant kernels, move to mini-app or actual
application (method of elimination)

•  Example parallel application analysis:
1.  read lists of data

2.  do local sort into buckets

3.  send one bucket each to all other nodes

4.  merge incoming buckets

•  Useful PRKs: 1: Nstream, 2: Sparse, Random, or Refcount, 3: Transpose, 4:
Nstream

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example esults

Reference implementations
•  Portable:

−  plain C/Fortran serial reference implementations, no excessive tuning

−  no assembly/intrinsics/ libraries (except MKL’s DGEMM, optional)

•  Multiple parallel versions:

−  “Traditional”: OpenMP, MPI: one- and two-sided + hybrid (OpenMP, MPI3 SHM), CAF,AMPI, FG-MPI

−  Disruptive: Charm++, Grappa, UPC, OpenSHMEM, Legion, HPX, OCR, Chapel, HClib, …

−  Oddball: Julia, Python

•  Parameterized: problem size, #iterations, algorithmic choices

•  No input files; all initialization data synthesized

•  Automatic verification test: robust, nonintrusive, inexpensive

−  keeps users honest

−  facilitates porting/debugging

 CAF=Fortran with co-arrays, OCR=Open Community Runtime, AMPI=Adaptive MPI, FG-MPI=Fine-grain MPI

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

PRKs you should care about
Because they:

•  Exhibit a range of granularities

•  Feature drastically different communication patterns

•  Proxy very important patterns in HPC

•  Contain both data parallel and non-data-parallel patterns

Dense matrix transposition (transpose)
 Operation: A += (B++)T, A and B distributed
identically, whole columns, column-major
storage format

Proxy for: global data redistribution (cf FFT)

0 1 2 3

ranks
0 1 2 3

ranks

Global
transpose

Local
transpose

Granularity from very coarse to
very fine, especially with strong
scaling

Point-to-point synchronization (synch_p2p)
 Operation: A(i,j) = A(i-1,j) + A(i,j-1) – A(i-1,j-1)

 A(0,0) = -A(m-1,n-1) [to couple successive sweeps over the grid]

Proxy for: pipelined solution of problem with non-trivial 2-way dependencies

Thread 0 Thread 1 Thread 2 Thread 3

j
i

Granularity very fine,
no data parallelism

m

n

Data parallel stencil (stencil)
 Operation: For all points in 2D grid, compute a += S(b++), where S is a stencil
operation (box or star-shaped), a and b are scalar grid variables (2D arrays)

Proxy for: multi-dimensional array operations with spatial locality

Star-shaped
stencil

Box-shaped
stencil

Granularity medium, reuse
factor depends on radius
of stencil (tunable)

Reference counting (refcount)
Operation: Update pair(s) of reference “counters” (c1,c2) in tandem

 Independent: (c1 c2)′ = (c1 c2)++

 Coupled: (c1 c2)′ = R(α) (c1 c2)

Proxy for: mutual exclusion, high and low contention, simple and compound

α
C = (1,0)

C′

•  Counters can be integer (independent only) or
floating point

•  Mutex can be atomic, lock, or none
•  Counter updates can be overlapped with

independent work (tunable)
•  Counters can be privatized (uncontended locks)

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

PRKs you may care about
Because they:

•  Test some additional important synchronization constructs

•  Provide information about serial performance and compiler smarts

The list:

•  DGEMM (MKL or hand-coded): top flops

•  Nstream: top memory bandwidth

•  Synch_global: global synchronization (OpenMP barrier/MPI_Allgather)

•  Sparse: Sparse matrix-vector multiply: memory latency

•  Random: HPCC Random Access, fixed verification + small problem sizes: latency

•  Reduce: vector reduction

•  Branch: inner loop conditionals (vectorization), PC jumps, instruction cache

Agenda
•  Motivation

•  Limitations

•  Philosophy

•  Context

•  Usage model

•  Reference implementations

•  PRKs you should care about

•  PRK you may care about

•  Example results

Results
Following results obtained on NERSC Cray XC30 (Edison)

•  two 12-core Intel® Xeon® E5-2695 processors per node

•  Aries interconnect in a Dragonfly topology.

•  Intel 15.0.1.133 C/C++ compiler for all codes, except Cray Compiler
Environment (CCE) 8.4.0.219 for Cray UPC, and GCC 4.9.2 was used for
Grappa. Berkeley UPC compiler 2.20.2 was used with the same Intel C/C++
compiler. System library versions Cray MPT (MPI and SHMEM) 7.2.1, uGNI
6.0, and DMAPP 7.0.1

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products.
For more complete information visit http://www.intel.com/performance

MPI+X based
models win
(X=OpenMP/MPI3)

Transpose, strong scaled (49152x49152*)

Aggregate performance MB/s

* Charm++: (47104x47104)

Stencil, radius=4, strong scaled (49152x49152*)

Normalized performance (Mflops/#nodes)/Mflops_single_node_MPI1

* Charm++: (47104x47104)

Synch_p2p, strong scaled (49152x49152*)

Aggregate performance MFlops

* Charm++: (47104x47104)

Results
Following results obtained on Xeon workstation

•  two 18-core Intel® Xeon ® CPU E5-2699 processors per node

•  Intel 17.0.0.098 C/C++ compiler with OpenMP enabled

•  All 18 cores used on exactly one processor

•  KMP_AFFINITY=granularity=fine,proclist=[{0,36},{1,37},{2,38},{3,39},{4,40},{5,41},
{6,42},{7,43},{8,44},{9,45},{10,46},{11,47},{12,48},{13,49},{14,50},{15,51},{16,52},{17,53},
{18,54},{19,55},{20,56},{21,57},{22,58},{23,59},{24,60},{25,61},{26,62},{27,63},{28,64},
{29,65},{30,66},{31,67},{32,68},{33,69},{34,70},{35,71}],explicit (i.e. 1 thread/core)

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products.
For more complete information visit http://www.intel.com/performance

Refcount results, shared counters

0

1

2

3

4

5

6

7

8

0 8 16 32 64 128 256 512 1024 2048 4096 8192

MCUP/s

private work/thread

HSW 2x18 cores, 18 threads

int-atomic
fp-atomic
dependent
fp-lock
int-lock

Summary
•  PRK can be used to compare different aspects of parallel programming

environments

•  Growing set of reference implementations available:
https://github.com/ParRes/Kernels

•  Join the PRK community to contribute or review implementations!

